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Abstract. If, as recently reported by the Super-Kamiokande collaboration, the neutrinos are massive, the
heaviest one, νH , would not be stable and, though chargeless, could in particular decay into a lighter
neutrino νL and a photon by quantum loop effects. The corresponding rate is computed in the standard
model with massive Dirac neutrinos as a function of the neutrino masses and mixing angles. The lifetime
of the decaying neutrino is estimated to be ≈ 1044 years for a mass ≈ 5 × 10−2 eV. Before the mass range
arising from present experiments on neutrino oscillations is definitively settled, it is still motivating to
study the νH → νLe+e− decay; if kinematically possible, it occurs at tree level and its one-loop radiative
corrections get enhanced by a large logarithm of the electron mass acting as an infrared cutoff. Thus the
νH → νLe+e− decay largely dominates the νH → νLγ one by several orders of magnitude, corresponding
to a lifetime ≈ 10−2 year for a mass of ≈ 1.1 MeV.

1 The decay νH → νLγ

1.1 Introduction

Evidence for the transmutation between the two neutrino
species νµ ↔ ντ has recently been reported by the Super-
Kamiokande collaboration [1]. As a consequence, neutri-
nos could have non-degenerate tiny masses, and mixing
among different lepton families becomes likely, in analogy
with the Cabibbo–Kobayashi–Maskawa flavor mixing in
the quark sector [2].

We assume that the neutrino “flavor” eigenstates νe,
νµ and ντ are linear combinations of the three-neutrino
mass eigenstates ν1, ν2 and ν3 of nonzero and non-dege-
nerate masses m1, m2 and m3 respectively according to




νe

νµ

ντ


 =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3







ν1

ν2

ν3


 ≡ U lep




ν1

ν2

ν3


 , (1)

where the 3 × 3 matrix Ulep is unitary.
The effective weak interactions of the leptons can now

be written as
Leff =

GF√
2
L†

λLλ, (2)
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where the charged current Lλ is

Lλ =
∑

`

3∑
i=1

U`iνiγλ(1 − γ5)`. (3)

Here ` stands for e−, µ−, τ−, and νi (with i = 1, 2, 3) are
the three-neutrino mass eigenstates.

Although the neutrinos are chargeless, a heavy neu-
trino νH can decay into a lighter neutrino νL by emitting
a photon; this decay is entirely due to quantum loop ef-
fects.

Neutrino oscillation measurements provide constraints
usually plotted in the (sin 2θij , ∆m2

ij = |m2
i − m2

j |) plane,
where θij is one of the three Euler angles of the rotation
matrix Ulep.

For practical purposes, we shall assume for Ulep the
following form [3]:

Ulep =




cos θ12 − sin θ12 0
1√
2

sin θ12
1√
2

cos θ12 − 1√
2

1√
2

sin θ12
1√
2

cos θ12
1√
2


 ; (4)

θ23 ≈ 450 is suggested by the Super-Kamiokande data
and θ13 ≈ 00 comes from the CH00Z data [1,3] which
give θ13 ≤ 130, and also from the Bugey experiment [4],
whereas θ12 is arbitrary. Although θ12 is likely to be small,
≈ 00, the maximal mixing angle θ12 ≈ 450 may also be
possible allowing νe ↔ νµ (as suggested by the LSND
experiment [5,3]).
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Fig. 1a–d. One-loop diagrams for νH → νLγ;
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Fig. 2a,b. One-loop diagrams for νH → νLγ;

1.2 General considerations

The first calculations of radiative neutrino decays have
been reported in [6,7]. Decays of heavy leptons in pro-
cesses that can violate leptonic numbers have been exten-
sively studied in [8,9]. The reader will find more references
in [10].

In the most general renormalizable gauge (convention-
ally called Rξ), six Feynman diagrams contribute to the
process νH(P ) → νL(p)γ(q), where the photon can be
real (q2 = 0) or virtual (q2 6= 0); the latter is neces-
sary when we consider the one-loop radiative corrections
to νH → νLe+e−. They can be grouped into two sets: four
in Figs. 1a–d and two in Figs. 2a–b.

Each one is gauge dependent, but it turns out that
the ξ dependence cancels out for each group of diagrams
separately, yielding the overall gauge independence of the
physical process.

We shall give the results in the ’t Hooft–Feynman
gauge ξ = 1.

For each diagram, the corresponding amplitude A is
written in terms of the effective vertex Γµ

iAνH→νLγ = (−ie)
(

ig
2
√

2

)2

×
∑

`

UL`U
∗
H`u(p)Γµ(`)u(P )ε∗

µ(q), (5)

where the u’s are the (Dirac) spinors of the two neutrinos,
ε∗

µ is the photon polarization, e the charge of the electron

and g the SU(2)L coupling constant. One has GF/21/2 =
g2/8M2

W .
The ultraviolet divergences are handled via the pro-

cedure of dimensional regularization, going to n = 4 − ε
dimensions.

The mass m of the lightest (outgoing) neutrino is al-
ways neglected, such that the results depend on the mass
M of the incoming neutrino, the mass MW of the W gauge
boson, and the masses m` of the internal fermions, which
will always appear in the dimensionless ratio

r` =
m2

`

M2
W

. (6)

After expressing the amplitude for each diagram in terms
of two-dimensional parametric integrals, we restrict our-
selves in this section to the case of a real outgoing pho-
ton, for which, due to qµε∗

µ = 0 and to the conservation of
the electromagnetic current, only the magnetic form factor
proportional to iσµνqν in the effective vertex contributes
(see for example [11,10]). The integration over the Feyn-
man parameters is made simpler by neglecting M2/M2

W
in the denominators.

1.3 Explicit computation of the six diagrams

Diagram 1a

The corresponding effective vertex Γµ
1a writes

Γµ
1a =

1
8π2 (1 + γ5)

∫ 1

0
dx

∫ 1−x

0
dy

N
µ

1a

D1(`)
(7)

where

D1(`) = M2
W [(1 − x) + r`x]

− M2xy − q2y(1 − x − y) (8)

and (γ is the Euler constant γ ≈ .577)

N
µ

1a =
{
[2(1 − x)(1 − y) + y]M2

− 2[(1 − x)(1 − y) + y2]q2

+ 6D1(`)
[
2
ε

+ ln 4π − γ − 1
2

− ln
D1(`)

Λ2

]}
γµ

+ 2M {y(1 − 2y)Pµ

+ [2y2 − (1 − x)(1 + 2y)]pµ
}

. (9)

In (9) and in the rest of the paper, Λ is an arbitrary scale
coming from the dimensional regularization.

By translational invariance, Γµ depends only on the
four-momentum transfer qµ and not on Pµ; the latter may
be projected onto the basis formed by three independent
four-vectors iσµνqν , qµ, and γµ, using the following rela-
tion valid for m = 0:

2u(p)(1 + γ5)Pµu(P ) = u(p)(1 + γ5)
× (iσµνqν + Mγµ + qµ)u(P ). (10)
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This yields

N
µ

1a = iMσµνqν [x − 1 − y(1 − 2x)]

+ 6qqµ[1 − x + 3y − 2xy − 4y2]
+

{
M2[1 − x − 2y(1 − 2x)]

− 2q2[y2 + (1 − x)(1 − y)]

+ 6D1(`)
[
2
ε

+ ln 4π − γ − 1
2

− ln
D1(`)

Λ2

]}
γµ. (11)

The x, y integrations for the pure magnetic term yield
the contribution of diagram 1a to the decay amplitude
νH → νLγ

A1a = A0

∑
`

UH`U
∗
L`F1a(`), (12)

where

A0 =
GF√

2
e

8π2 u(p)M(1 + γ5)iσµνqνu(P )ε∗
µ(q). (13)

One gets

F1a(`) =
r2
` (1 − 3r`) ln r`

2(r` − 1)4
(14)

+ r`

[
7

12(r` − 1)
+

2
(r` − 1)2

+
1

(r` − 1)3

]
− 7

12
.

The singularities of F1a(`) at r` = 1 are fake: F1a(`) =
−5/12 for r` = 1.

Formula (14) is in agreement with similar calculations
[11] for µ− → e−γ in the limit r` → 0, where only the
linear term in r` was kept, and the logarithmic term was
neglected.

If m were not neglected, the M(1 + γ5) term in (13)
would simply be replaced by M(1+γ5)+m(1−γ5). If we
keep M2xy in D1(`), we will still obtain explicit analytic
forms for the F s but the results will be complicated and
not illuminating.

Diagram 1b

Writing in a similar way

Γµ
1b(`) =

1
8π2 (1 + γ5)

∫ 1

0
dx

∫ 1−x

0
dy

N
µ

b

D1(`)
, (15)

one finds

N
µ

1b = r` {M(1 − y) [(2y − 1)Pµ

+ (1 − 2x − 2y)pµ]

+ D1(`)
[
2
ε

+ ln 4π − γ − 1
2

− ln
D1(`)

Λ2

]
γµ

}
. (16)

The use of (10) transforms the above expression into

N
µ

1b = r` {iMσµνqνx(y − 1)
+ 6qqµ(y − 1)(1 − x − 2y)
+

(
M2x(y − 1) (17)

+ D1(`)
[
2
ε

+ ln 4π − γ − 1
2

− ln
D1(`)

Λ2

])
γµ

}
,

and, after performing the parametric integration of the
purely magnetic term one obtains

F1b(`) =
r2
` (r` − 2) ln r`

2(r` − 1)4

+ r`

[
− 1

3(r` − 1)
− 1

4(r` − 1)2
+

1
2(r` − 1)3

]
. (18)

The singularities of F1b(`) at r` = 1 are again only appar-
ent; in fact F1b(`) = −1/8 for r` = 1.

The computations proceed along the same way for the
other diagrams.

Diagram 1c

N
µ

1c = iMσµνqν(x + y − 1)

+ 6qqµ(1 − x − y) +
(
M2(x − 1) + m2

`

)
γµ (19)

gives after the integrations over x and y

F1c(`) =
−r2

` ln r`

2(r` − 1)3

+ r`

[
1

4(r` − 1)
+

1
2(r` − 1)2

]
− 1

4
. (20)

Diagram 1d

N
µ

1d = m2
`γ

µ (21)

yields
F1d(`) = 0. (22)

Diagram 2a

Calling

D2(`) = M2
W x + m2

`(1 − x)
− M2xy − q2y(1 − x − y) (23)

one has

N
µ

2a = 2iMσµνqνx(y − 1) + 2 6qqµ(1 − y)(x + 2y)

+
{−2m2

` + 2q2(y − 1)(x + y) (24)

− 2D2(`)
[
2
ε

+ ln 4π − γ − 1
2

− ln
D2(`)

Λ2

]}
γµ,

and

F2a(`) =
r`(2r` − 1) ln r`

(r` − 1)4
(25)

+ r`

[
2

3(r` − 1)
− 3

2(r` − 1)2
− 1

(r` − 1)3

]
− 2

3
.



120 Q. Ho-Kim et al.: The decays νH → νLγ and νH → νLe+e− of massive neutrinos

Diagram 2b

N
µ

2b = r` {iMσµνqν [x(1 + y) − 1]

+ 6qqµ[1 − x(1 + y) − 2y2]
+

(−m2
` + M2x + q2y(x + y − 1) (26)

− D2(`)
[
2
ε

+ ln 4π − γ − 1
2

− ln
D2(`)

Λ2

])
γµ

}

yields

F2b(`) =
r`(2 − r`) ln r`

2(r` − 1)4
(27)

+ r`

[ −5
12(r` − 1)

+
3

4(r` − 1)2
− 1

2(r` − 1)3

]
.

1.4 Cancelation of the ultraviolet divergences

All terms that are ` independent do not contribute to
the amplitude because of the unitarity of Ulep; this is in
particular the case of the (divergent) terms (2/ε + ln 4π −
γ − 1/2) in the diagrams 1a and 2a.

The only two remaining divergent diagrams are 1b and
2b; however the coefficients of their (`-dependent) diver-
gent terms exactly cancel, ensuring the finiteness of the
final result.

1.5 Result for the total amplitude of νH → νLγ

Dropping the constants (−7/12), (−1/4), (−2/3) in (14),
(20) and (25) which, being ` independent, do not con-
tribute to the decay amplitude (see above), we obtain for
the sum of the six contributions

∑
` UH`U

∗
L`[F1.a···d(`) +

F2.a,b(`)] the expression

AνH→νLγ =
3
4

A0

∑
`

UH`U
∗
L`

× r`

(1 − r`)3
[
1 − r2

` + 2r` ln r`

]
, (28)

where A0 has been defined in (13). Our result (28) agrees
with formula (10.28) for the function f(r) in [10] (where
the three irrelevant constants mentioned above are kept).

The corresponding decay rate is

Γ0 ≡ ΓνH→νLγ

=
G2

FM5

192π3

(
27α

32π

)

×
∣∣∣∣∣
∑

`

UH`U
∗
L`

r`

(1 − r`)3
[
1 − r2

` + 2r` ln r`

]∣∣∣∣∣
2

. (29)

With the assumptions about Ulep and the corresponding
mixing angles mentioned in the introduction, one finds for
M ≈ 5 × 10−2 eV

ΓνH→νLγ ≈ 10−44/year. (30)

ν
H

(P)

ν
L(p)

W

_
e (k−)

e+(k+)

Fig. 3. Tree diagram for νH → νLe+e−;

This is to be compared with the experimental lower limit
found in [12].

The detectability of this decay and its relevance for
astronomy has been emphasized for example in [13].

2 The decay νH → νLe+e−

2.1 Generalities

If one believes the combined results on atmospheric and
solar neutrinos (see for example [14,15]), there is obviously
no space for a “light” non-sterile neutrino with a mass
larger than a few 10−2 eV; if one includes the LSND results
[5], the upper bound can be pushed up to 1 eV, still largely
beyond the e+e− kinematical threshold.

However, the history of neutrinos has taught us that
subtle uncertainties take a long time to be perfectly mas-
tered, and that, in spite of their attractiveness, new and
important results must always be confirmed by many dif-
ferent and uncorrelated sources before they are promoted
to the status of an unshakable physical reality.

And, still, the present direct experimental limit on the
mass of ντ is [16] mντ

≤ 18.2 MeV. Stronger limits (below
1 MeV) come from cosmological arguments [17,18] but are
more likely to be subject to uncertainties.

So, it is still of interest to study the decay νH →
νLe+e− (see [10,4] and references therein).

2.2 Computation

If kinematically allowed, this decay is governed at tree
level by the diagram of Fig. 3, and at the one-loop level
by ten diagrams: the six previously considered in Figs. 1
and 2, where the photon, now off-mass-shell, decays into
an electron-positron pair, and the four box diagrams of
Fig. 4 in which the W+ − W− pair is converted into the
e+ − e− pair.

The tree amplitude

Atree =
GF√

2
U∗

HeULeu(k−)γµ(1 − γ5)u(P )

× u(p)γµ(1 − γ5)v(k+) (31)
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can be recast, by a Fierz transformation and using the
unitarity of Ulep, into

Atree = (−1)2
GF√

2

∑
j=µ,τ

U∗
HjULju(p)γµ(1 − γ5)u(P )

× u(k−)γµ(1 − γ5)v(k+). (32)

As for the one-loop corrections, a careful examination of
all the terms in (11), (17), (19), (21), (24) and (26) for
the six vertices Γµ

1a−d(`), Γ
µ
2a,b(`) shows that the dominant

behavior comes from the q2 term in (24) corresponding to
Fig. 2a; it exhibits a contribution ln r` → ∞ for r` → 0,
reflecting mass singularities (or infrared divergences) of
the loop integrals.

We can track down this divergent behavior by examin-
ing the integration limits x = 0 and x = 1 of the denom-
inators D1,2(`). When r` = 0, an infrared-like divergence
occurs if the numerators N

µ
2 (`) lack an x term to cancel

the x = 0 integration limit of the xM2
W term in the de-

nominator D2(`). This happens with the 2y(y −1)q2 term
of N

µ
2a (`) in (24).

This infrared-like divergence, which arises when there
are two massless (r` = 0) internal fermions in the loop,
has been noticed a long time ago in the computation of
the neutrino charge radius [19].

Compared to ln r`, all other terms are negligible be-
cause they are strongly damped by powers of r`, or rn

` ln r`,
where n > 0 and r` < 10−3. Thus Fig. 2b is damped by
r` ln r`, and the four diagrams of Fig. 1 are all strongly
damped since an infrared-like divergence cannot occur
here: the x = 1 integration limit of the (1 − x)M2

W in
the denominator D1(`) is systematically canceled by the
(1−x) coming from the integration over the y variable. Ex-
plicit x, y integrations of all six vertices Γµ

1a−d(`), Γ
µ
2a,b(`)

confirm these features.
Similar considerations show that the box diagrams of

Fig. 4 share the same power suppression rn
` ln r` as the five

other diagrams of Figs. 1a–d and Fig. 2b. The origin of
this r` power suppression in all one-loop diagrams except
Fig. 2a can be traced back to the fact that they involve
two (W, Φ) propagators; only Fig. 2a and Fig. 2b have one,

ν

ν

H

L

(P)

(p)

W

l

l

e−(k−)

e+(k+)

γ *(q)

Fig. 5. Leading radiative corrections to νH → νLe+e−

but the latter nevertheless gets an r` suppression from the
Φ fermion couplings.

To summarize, at one loop, only the 2y(y − 1)q2 term
in (24) yields an infrared-like divergence ∝ ln r` while all
other terms get damped by powers of r`.

The leading q2 ln r` term of Fig. 2a in the νH − νL − γ
vertex cancels the photon propagator 1/q2 in Fig. 5 and
yields an effective local four-fermion coupling proportional
to GF. The leading contribution to the one-loop radiative
corrections to the νH → νLe+e− tree amplitude is accord-
ingly found to be

Arad =
GF√

2
e2

24π2

[∑
`

U∗
H`UL` ln r`

]

× u(p)γµ(1 − γ5)u(P )u(k−)γµv(k+), (33)

which can be put, using again the unitarity of Ulep into
a form similar to Atree in (32):

Arad =
GF√

2
e2

24π2


 ∑

j=µ,τ

U∗
HjULj ln

m2
j

m2
e




× u(p)γµ(1 − γ5)u(P )u(k−)γµv(k+). (34)

The sum Atree + Arad ≡ B is now easy to manipu-
late when we consider the interference between Atree and
Arad in |B |2 for the decay rate.

B =
GF√

2
u(p)γµ(1 − γ5)u(P )

× u(k−)γµ(gV − gAγ5)v(k+), (35)
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with

gV =
∑

j=µ,τ

U∗
HjULj

(
1 +

α

3π
ln

mj

me

)
,

gA =
∑

j=µ,τ

U∗
HjULj . (36)

From the amplitude B , we compute [20] the decay rate
Γ1 ≡ ΓνH→νLe+e− and find

dΓ1

dq2 =
G2

F

192π3

√
q2(q2 − 4m2

e)
q4M3 (M2 − q2)2

× {
(g2

V + g2
A)

[
q2(M2 + 2q2) + 2m2

e(M
2 − q2)

]
+ 6m2

eq
2(g2

V − g2
A)

}
, (37)

from which one gets

Γ1 =
∫ M2

4m2
e

dq2 dΓ1

dq2 =
G2

FM5

192π3

×
{

g2
V + g2

A

2
G(x) + (g2

V − g2
A)H(x)

}
, (38)

where x = m2
e/M

2, and G(x), H(x) are the phase-space
functions given by

G(x) =
[
1 − 14x − 2x2 − 12x3]√

1 − 4x

+ 24x2(1 − x2) ln
1 +

√
1 − 4x

1 − √
1 − 4x

, (39)

H(x) = 2x(1 − x)(1 + 6x)
√

1 − 4x

+ 12x2(2x − 1 − 2x2) ln
1 +

√
1 − 4x

1 − √
1 − 4x

. (40)

To this leading logarithmic radiative correction expressed
by ≈ α ln r in (36) and (38), we may also add the non-
leading (simply α, without ln r) electromagnetic correc-
tion to the e+e− pair. This non-leading correction can
be obtained from the one-loop QCD correction to the
well known e+e− → quark-pair cross-section, or the τ →
ντ + quark-pair decay rate found in the literature [20];
the only necessary change is the substitution αs ↔ 3α/4.
Thus, in addition to Γ1, we have the non-leading contri-
bution Γ2

Γ2 =
G2

FM5

192π3

(
3α

4π

)
G(x)K(x, x); (41)

the function K(x, x) is tabulated in Table 14.1 of [20].
We emphasize that K(x, x) is a spectacular increas-

ing function of x, acting in the opposite direction to the
decreasing phase-space function G(x).

If we take, for example, the mass of the heavy decay-
ing neutrino to be 1.1 MeV, its lifetime is found to be
≈ 10−2 year.

Finally we note that the virtual weak neutral Z0 boson
replacing the virtual photon in Fig. 5 also contributes to
νH → νLe+e−. However, it can be safely discarded, being
strongly damped by q2/M2

Z due to the Z0 propagator. Its
relevance to the three-neutrinos mode νH → νLνν̄ may be
worth investigating.

3 Conclusion

The recent observation by the Super-Kamiokande collab-
oration of a clear up–down νµ asymmetry in atmospheric
neutrinos is strongly suggestive of νµ → νX oscillations,
where νX may be identified with ντ or even possibly a ster-
ile neutrino. These results have many important physical
implications. In particular, neutrino oscillations mean that
neutrinos have a non-vanishing mass, which, according to
the new data, may be at least as heavy as 5 × 10−2 eV.
If a neutrino νH has indeed a mass, it may not be stable
against decay and could in principle decay into a lighter
neutrino, νL, through a cross-family electroweak coupling.
We have given here a detailed calculation for the decay
modes νH → νLγ which may be also relevant for gener-
alizations to flavor changing processes Q → q + γ in the
quark sector.

Waiting for a definitive confirmation of the neutrino
mass range coming from oscillation experiments, the
present direct upper bounds for there masses do not ex-
clude the decay νH → νLe+e−. In contrast to the former,
it arises at tree level and gets further enhanced by large
radiative one-loop corrections, is by far the dominant pro-
cess and may therefore be detectable provided that νH has
a mass > 2me. A positive evidence for such decay modes
would give a clear signal of the onset of ‘new physics’.
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